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ABSTRACT; Most known concentrations of humpback whales in the southern hemisphere were
exploited by commercial whaling operations, first on tropical breeding grounds during the 19th cen¬
tury and then in Antarctic feeding areas and along migratory corridors during the 20th century. How¬
ever, whaling logbooks of 19th century whalers show almost no records of catches in some regions of
current concentration, notably eastern Polynesia, suggesting that humpback whales were formerly
absent from these regions or that the locations of their primary concentrations were unknown to early
whalers. Here we investigate the population structure of humpback whales across the South Pacific
and eastern Indian oceans, with an interest in the origins of whales in eastern Polynesia, using an
extensive collection of mitochondrial f^NA (mtDNA) sequences obtained from living whales on 6
breeding grounds: New Caledonia, Tonga, Cook Islands, eastern Polynesia (Society Islands of French
Polynesia), Colombia and Western Australia. From a total of 1112 samples we sequenced 470 bp of
the mtDNA control region, revealing 115 unique haplotypes identified by 71 variable sites. We found
significant differentiation, at both the haplotype and nucleotide level {Fgr = 0033; Oj,^- = 0.022),
among the 6 breedhig grounds and for most pair-wise comparisons. The differentiation of the eastern
Polynesia humpback whales is consistent with the hypothesis of a relic subpopulation, rather than
vagrancy or colonization from known neighboring breeding grounds. Regardless of their origin, it
seems probable that islands of eastern Polynesia are now the primary breeding grounds for hump¬
back whales feeding in management Area VI (170 to 120° W) of the Antarctic, as defined by the Inter¬national Whaling Commission.
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INTRODUCTION

The humpback whale Megaptera novaeangliae
Borowski, 1781 is found worldwide, with populations
in all the major oceans except the Arctic Ocean (Kel-
logg 1929). During the last 2 centuries, humpback
whales have been hunted intensively, especially in the
southern hemisphere, where it was estimated that
populations were reduced to a few percent of their pre-
exploitation abundance (Chapman 1974). Based on
catch records corrected for illegal Soviet whaling, a
total of more than 200000 humpback whales were
killed from 1904 to 1980 (Clapham & Baker 2002).

From the beginning of this exploitation, it was appar¬
ent that humpback whales in the southern hemisphere
segregated geographically during their annual migra¬
tion from winter breeding grounds in tropical waters to
summer feeding areas in high latitude waters (Kellogg
1929). Catches during the 19th century by American
whalers were made mainly during winter months in 6
tropical breeding grounds. Of these, 3 were in the
Pacific Ocean — off Colombia (although located geo¬
graphically in the northern hemisphere, is considered
to be a southern hemisphere population; see below, this
section) and Ecuador, around the Tongan archipelago,
and northwest of New Caledonlaj 2 were in the Atlantic
Ocean — off the western coast of Africa and off Brazili
and 1 was in the Indian Ocean^off the northwestern

coast of Australia (Townsend 1935, Mackintosh 1942).
During the 20th century, humpback whales were

hunted along their migratory corridors and more inten¬
sively in their feeding areas in sub-Antarctic and
Antarctic waters (Mackintosh 1942,1965). The distribu¬
tion of humpback whale catch records led to the identi¬
fication of 5 main summer feeding areas in the South¬
ern Ocean (see Fig. 1): Area I around the South
Shetland Islands (and now considered to extend from
120 to 60° W); Area H in the Weddell Sea and around
the Falkland Islands Dependencies (60° W to 0°); Area
111 between Bouvet and Kerguelen Islands (0 to 70°E)i
Area IV between Kerguelen Island and Western Aus¬
tralia (70 to 130° E), and Area V between 130° E and
170° W, including the Ross Sea (Mackintosh 1942). A
sixth area, 170 to 120° W, was added based on the dis¬
tribution of blue whales Balaenoplera muscuhis, fin
whales Balaenoplera physaliis or humpback whales,
despite little evidence for a concentration of humpback
whales (Mackintosh 1942). The 6 feeding areas were
later adopted by the International Whaling Commission
for purposes of management (Donovan 1991).

'Discovery' marks (stainless steel tags shot into the
whale's blubber and later recovered when the whale
was killed and flensed) provided the first direct evi¬
dence of migratory links between breeding grounds
and feeding areas (Mackintosh 1942, Dawbin 1966).

Migratory relationships were established between 3 of
the Antarctic Areas — 111, IV and V—and the northern
breeding grounds closest to them (Mackintosh 1942,
Chittleborough 196.5, Dawbin 1966). More recently,
migratory connections between Colombia/Ecuador
and Area 1 were confirmed through resightings of nat¬
urally marked individuals and genetic markers (Stone
et al. 1990, Caballero et al. 2001, Stevick et al. 2004).
Recently, a migratory connection has been shown be¬
tween Brazil and Area II by satellite tagging (Zerbini et
al. 2006). The putative connections between the west¬
ern coast of Africa and Areas II and III remain uncon¬

firmed. Thus, it was generally assumed that whales
from each feeding area migrated north each year to
discrete breeding grounds, forming more or less inde¬
pendent subpopulations or 'stocks' (Mackintosh 1965).

Until recently it was thought that Antarctic Area VI
did not encompass a population comparable to those of
neighboring Areas (V and I), and consequently that
there were no major winter breeding groujids in far
Polynesia (to the north of Area VI). Despite extensive
whaling effort across the central South Pacific during
the 19th century (Townsend 1935) and in adjacent
Antarctic areas during the 20th century (Mackintosh
1942), no concentrations of humpback whales were
identified in these regions. However, in the last
decade, evidence has grown in support of a substantial
number of humpback whales in Area VI and eastern
Polynesia. Following the revelation of extensive illegal
whaling by the USSR from 1947 to 1972/73 (Yablokov
1994), revised records showed substantial catches
extending east to 135° W during 1959-60 and 1960-61,
mostly in Antarctic waters. More recently, sighting sur¬
veys have shown relatively high concentrations of
humpback whales in Antarctic Area VI (Brown & Burt
1998). Finally, surveys around the Cook Islands and in
French Polynesia conducted since the early 1990s have
confirmed a significant concentration of humpback
whales in these waters during winter months (Hauser
et al. 2000, Poole 2002).

Here we present the most comprehensive survey to
date of the population structure of mitochondrial DNA
(mtDNA) variation among South Pacific humpback
whale breeding grounds, including 4 from Oceania
(New Caledonia, Tonga, the Cook Islands and French
Polynesia), and 1 from the eastern Pacific coast off
Colombia. Additionally, we include the breeding
ground off Western Australia, which represents the
eastern Indian Ocean, to compare with a breeding
ground outside of the South Pacific. We extend previ¬
ous analyses of mtDNA variation (Baker et al. 1993,
1994, 1998, Baker & Medrano-Gonzalez 2002), using a
longer length of control region sequence, much larger
sample sizes and a wider geographic coverage. We
then  consider the  genetic  evidence  in  relation  to
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3 hypotheses regarding the origins of humpback
whales in eastern Polynesia: (1) vagrancy; (2) coloniza¬
tion from an adjacent region^ and (3) a previously
unknown relic population. We conclude that only
the hypothesis of a relic population, perhaps having
shifted from some unknown location, is concordant
with the observed genetic differentiation in relation to
neighboring breeding grounds.

MATERIALS AND METHODS

Study area and sampling methods. Skin samples
were collected from humpback whales throughout the
South Pacific and on the western coast of Australia
during the breeding seasons from 1990 to 2002 (Fig. 1,
Table 1). Previously analyzed samples (Baker et al.
1993, 1998, Caballero et al. 2001, Baker & Medrano-
Gonzalez 2002) were re-sequenced to allow the analy¬
sis of a longer fragment of the mtDNA control region
and for confirmation of polymorphic sites using im¬
proved automated sequencing technology. Sequences
from New Caledonia (Garrigue et al. 2004) were
reviewed for inclusion with new sequences from the
2002 season.  Most previously  published sequences

from Eastern Australia and New Zealand (Baker et al,
1998) were not included in this analysis because of the
small sample size from these areas. One sample from
Eastern Australia (EAll) was re-sequenced for inclu¬
sion because of its unusual position in an earlier phylo-
genetic analysis (Baker etal. 1998).
Most of the samples were collected as skin biopsies,

using darts propelled by either a crossbow or a modi¬
fied veterittary capture rifle. The other sources of
samples were sloughed skin and a small nimiber of
beachcast whales. We attempted to avoid biases in
sampling of age/sex classes by approaching groups
regardless of composition and by attempting to collect
samples from all individuals in a group, In New Cale¬
donia and French Polynesia, samples were collected
throughout the winter season. In Tonga, samples were
collected throughout a 3- to 4-wk period, during the
presumed peak of seasonal abundance (August to Sep¬
tember) Most of the samples were stored in the field in
70% ethanol at room temperature and transferred to
-70°C in the laboratory for long-term storage.
Laboratory analyses. Genomic UNA was extracted

using a standard phenol/chloroform extraction proto¬
col modified for small skin samples by Baker et al.
(1994). Symmetrical amplification of the mtDNA con-
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Fig. 1. Megaptera nov,ie<ingliiie. Cjimgraphic distribution and proportion of mtUNA contr(jl region clades in each breeding
ground of the eastern Indian Ocean and South Pacific. Clade denomination (AE, CD and IJ) follows previous publications (e.g.
Baker et al. 1993, Caballeio et al. 2001, Baker & Medra no-Gonzalez 2002) and the present study (SH). Division of Antarctic
feeding grounds (Areas 1 and IV to VI) and breeding stocks (D-G) foUovvs the model of stock structure currently used by the

Scientific Committee of the hiternalional Whaling Commission (IWC 1998)
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trol region, proximal to the tPro RNA gene, was per¬
formed using PCR following standard protocols. An
800 bp portion of the mtDNA control region was ampli¬
fied using the primers light-strand tPro-whale Dlp-1.5
and heavy strand Dlp-8G (Garrigue et al. 2004). This
region extended across the 2 shorter and partially
overlapping fragments used in past analyses, referred
to as the 'North Atlantic' and 'Worldwide consensus'
regions by Baker & Medrano-Gonzalez (2002). Ampli¬
fication and subsequent cycle sequencing were im¬
proved by the addition of an M13 forward sequence to
the 5' end of the Dip-15 primer Temperature profiles
consisted of a preliminary denaturation period of 2 min
at 94°C, followed by 35 cycles of denaturation for 30 s
at 94°C, primer annealing for 40 s at 56°C, and poly¬
merase extension for 40 s at 72°C, A final extension
period for 10 min at 72°C was included.
Unincorporated primers and nucleotides were re¬

moved from PCR products using exonuclease 1 (Exo I)
and shrimp alkaline phosphatase (SAP) and se-
quenced on an AB1377 or an AB13100 DNA sequencer
(Applied Biosystem) using the primer M13Dlp-1.5.
Sequences were aligned and edited using Sequencher
(version 4.1 2, Genes Codes). Chromatographs were
checked visually for sequencing errors and all variable
positions were confirmed by comparison of multiple
chromatographs or by reverse sequencing using the
Dlp8-G primer (-20% of samples). Comparisons of
sequences to identify polymorphic sites and haplo-
types were performed using MacClade (version 4.0,
Sinauer Associates).
The sex of whales was identified by amplification of

sex-specific markers following the protocol of Gilson et
al. (1998). This involves a multiplex PCR with primers
designed to amplify the male-specific SRY gene and,
as positive controls, primers designed to amplify the
ZFY/ZFX genes of males and females.
The potential for replicate sampli^s of individual

whales was considered for each regional sample set.
Replicates were removed in the New Caledonia and
Tongan samples, where photographs and microsatel-
lite genotyping allowed for individual identification.
Genotypes based on 9 loci were employed in the New
Caledonia sample, and between 5 and 9 loci for Tonga
(see Garrigue et al. [2004] for details). For other breed¬
ing grounds, field notes and individual identification
photographs were reviewed to remove replicates, but
microsatellite genotypes were not available. The low
re-sighting rate of photo-identified whales observed in
some of the areas, notably the Cook Islands and
French Polynesia (Garrigue et al. 2002), suggests that
the number of replicate samples within or between
regions was likely to be low.
Data analyses. Genetic diversity was estimated at

both the haplotype (without regard to the genetic dis¬

tance or number of nucleotide substitutions) and
nucleotide level (using unadjusted pair-wise differ¬
ences between sequences) using the program Arle¬
quin (version 2.0 available from http://cmpg.unibe.ch/
software/arlequin/software/). The differentiation be¬
tween breeding grounds was quantified using an
Analysis of Molecular Variance (AMOVA) (Excoffier et
al. 1992) as implemented in Arlequin, calculated for
both differences in haplotype frequency {Fst) and
nucleotide differentiation (Osr)- The significance of the
observed <^sr and Fst values was tested using 5000
random permutations of the data matrix. Under the as¬
sumption of Wright's Island model of population struc¬
ture (Takahata & Palumbi 1985), the effective migra¬
tion rate of females (N^,,) was estimated as (1 - Fgr) x
2Fs7-'' for haplotype and nucleotide indices.
A phytogeny of the humpback whale haplotypes was

constructed using the Neighbor-Joining method and
maximum parsimony as implemented in PAUP' (ver¬
sion 4.bl0, Sinauer Associates). For the Neighbor-
Joining method, minimum evolution was used as the
default optimality criterion. For parsimony, heuristic
search conditions were starting trees obtained by step¬
wise addition with 10 random sequence addition repli¬
cates and tree bisection reconnection (TOR) branch
swapping, with searches limited to 100 rearrange¬
ments for each replicate. For Neighbor-Joining, the
sequences were adjusted for multiple substitutions
using the Kimura 2-parameter model. Bootstrap sup¬
port for Neighbor-Joining reconstruction was calcu¬
lated after 1000 simulations. The large number of
sequences precluded the use of maximum likelihood
for phylogenetic reconstruction. Phylogtuiies were
rooted using a blue whale (GenBank accession num¬
ber X72204) and a fin whale (GenBank accession num¬
ber X61145) as outgroups, because of their close taxo-
nomic relationship (Sasaki et al. 2005).

RESULTS

Genetic diversity

A total of 1112 humpback whale skin samples col¬
lected in 6 tliscrete regional wintering breeding
grounds were used in our analyses (Fig. 1, Table 1), A
470 bp consensus region of the mtDNA control region
was defined and used in all subsequent analyses. This
consensus region begins at Position 6 of the reference
humpback whale control region sequence (GenBank
accession number X72202), and is considered to in¬
clude more than 85% of the variation in the entire
control region (Baker & Medrano-Gonzalez 2002).
Seventy-one variable sites defined 115 unique haplo¬
types among the 1112 samples (GenBank numbers
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Table 1. Megaptera novaeangliae. Surrrmary of sampling periixl (years), number of samples (known or assumed to represent indi¬
vidual whales) and haplotypes of mtDNA control region from 6 breeding grounds of the southern hemisphere, including haplo-
type diversity (ft), percentage of nucleotide diversity (7t), luimber of individuals in each clade (AE, CD, U or SH) and of each sex

(M = male. F = female, U = unknown). For details of stocks, regions and clades see Fig.l

Stock Region
M/F/U

Yeais Simiples No. of

haplotypes

h It AE/CD/U/SH

D Western

Australia (WA)
127/43/4

l*iO, 1993
19'.>4, 2002

174 53 0.970 ± 0.004 2.04 ± 1.04 0/105/66/3

E New

Caledonia (NC)
147/102/1

1995-2002 250 61 0.974 ± 0.003 2.12 ± 1.08 0/149/8,5/16

E Tonga (Tg)
216/86/8

1<391,
1994-2002

310 48 0.962 ± 0.004 2.01 ± 1.02 0/19<3/99/15

F Cook

Islands (CI)
70/56/5

19*18-2002 131 23 0.923 ± 0.010 1.94 ± 1.00 0/85/44/2

F French

Polynesia (FP)
55/31/13

U)97-2002 99 21 0.913 ± 0.012 1.94 ±1.00 0/63/29/7

G Colombia (Col)
90/43/15

1991-1999 148 27 0.900 ±0.016 1.88 ±0.96 3/98/47/0

Total

705/361/46

1112 115 0.975 ± 0.001 2.04 ± 1.03 3/696/370/43

DQ768307 to DQ768421, Fig. 2). The variabte nucleo¬
tides included 3 insertions/deletions, 3 transversions

and 65 transitions. The overall haplotype diversity (/!)
was 0.975 ± 0.001, and ranged between 0.900 and
0.974 in the regional samples. Nucleotide diversity (rt)
was 2.04 ± 1.03%, and ranged between 1.88 and
2.12% (Table 1). These were similar to those previ¬
ously reported and high in comparison to populations
in other oceans (Baker & Medrano-Gonzalez 2002).
New Caledonia showed the highest haplotype and
nucleotide diversity across the entire study area and
Colombia the lowest, suggesting an increase in both
measures of diversities from east to west across the

study area. A modified Mest (Nei 1987) revealed no
significant difference in diversity among breedincj
grounds at the nucleotide level. However, haplotype
diversity was significantly higher in the western
region breeding grounds (Western Australia, New
Caledonia and Tonga) when compared with those of
the eastern region (Cook Islands, French Polynesia
and Colombia).

Of the 115 haplotypes found in this study, 2 occurred
in all 6 sampled regions, 3 in all 5 South Pacific regions
and 60 in only 1 breeding ground (Fig. 2). Western
Australia showed the highest proportion of unique
haplotypes (50.9%), perhaps reflecting some isolation
from the South Pacific or greater interchange with
other regions of the Indian and South Atlantic oceans.

The Cook Islands sample showed the lowest propor¬

tion of unique haplotypes (4.4%); Tonga (8.3%) and
French Polynesia (9.5%) had similar proportions of
unique haplotypes, and New Caledonia (27 9%) and
Colombia (33.3%) had intermediate proportions.
The sex of most whales (n = 1066) was identified

using molecular methods; however, a small number of
sloughed skin samples (n = 21) and biopsy samples
(n = 25) failed to amplify for sex markers. A significant
bias towards males was observed (705 males, 361
females, x' = 11109, p < 0.001, Table 1). The male
bias was significant at each breeding ground except
the Cook Islands (x' = 1 56, p = 0.21). A similar bias
towards males in tropical catches was reported dur¬
ing commercial whaling (Mackintosh 1942, Chittle-
borough 1965) and in other more contemporary stud¬
ies from breeding areas (eg. Baker et al. 1994, 1998,
Brown et al. 1995).

Phylogenetic reconstruction

The Neighbor-Joining and parsimony reconstruc¬
tions of haplotypes recovered 2 clades (Fig. 3), referred
to in previous phylogenetic analyses as the CD and IJ
clades (Baker et al. 1993), even though bootstrap sup¬
port for these was weak (<50%, Fig. 3). Two basal hap¬
lotypes (SP8 and SP9) did not form a clear clade in the
Neighbor-Joining reconstruction but corresponded to
the previously described AE clade, which is otherwise
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Fig. 2 (continued)

characteristic of liumpback whales in the North Pacific
(Baker et al. 1993, Caballero et al. 2001, Baker &
Medrano-Gonzalez 2002). A fourth clade referred to
here as Sl-f (for southern hemisphere) had not been
described previously^ but included the sample EAll
from Eastern Australia (Haplotype SP2), previously
noted as unusual in its phylogenetic placement (Baker
etal. 1998).

All breeding grounds included haplotypes of the CD,
IJ and SH clades except Colombia, which lacked SH
haplotypes (Fig. 1, Table 1), Colombia was unique in

^The SH Clade was discovered simultaneously by M. H. Engel
and colleagues working on samples from humpback whales
on the Brazilian breetling grounds (pers. comm). The clade
denomination was a joint proposal by this group and our¬
selves

that it included haplotypes of the AE clade. The CD
clade was the most common across all the regions,
followed by the IJ clade and, to a lesser extent, by SH
and AE clades. Two clades were recognized by fixed
characters; SH was distinguished by 2 transitions at
positions 254 (G from A) and 269 (C from T), and clade
IJ was distinguished by 2 transitions at positions 62
(C from T) and 168 (T from C).

Differentiation and gene flow among breeding
grounds

The AMOV.A showed significant overall differentia¬
tion among the 6 breeding grounds at the haplotype
and nucleotide level {Fst = 0.033; O,-, = 0 022). All pair-
wise comparisons showed significant differences ex-
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cept that between Tonga and the Cook Islands at the
nucleotide level (Table 2). Colombia showed the great¬
est differentiation from all the other grounds, both at
the haplotype and nuchiiotide levels, most notalily with
the 2 geographically closest breeding grounds of east¬
ern Polynesia (French Polynesia and Cook Islands). For
the rest of the pair-wise comparisons, the observed ten¬
dency was towards smaller genetic differentiation val¬
ues among geographically closer regions.
Assuming Wright's Island model, the overall effec¬

tive female migration rate per generation (N,^) was
estimated to be 14.6 (based on F^t) or 22.9 (based on
^sr)- Assuming a generation time of 18 yr (Roman &
Palumbi 2003), this suggested an exchange of around
1 female per year among each breeding ground. How¬
ever, pair-wise comparisons suggested that migration
was more likely between some neighboring breeding
grounds (Table 2). The highest estimated gene flow
was between Tongan and New Caledonian humpback
whales at the haplotype level (Nmt = 57 females per
generation, or interchange of 3 females per year) and
between the Cook Islands and Tonga at the nucleotide
level (Nnif =130 females per generation, or interchange
of 7 females per year). The lowest gene flow occurred
between Colombia and all the other breeding grounds,
estimated to be less than 1 female every 2 yr using
either Fgr or <I>,sr.

Table 2. Megaptera novaeangliae. Pair-wise test of differentiation for mtDNA con¬
trol region sequence between 6 breeding grounds or stocks/sub-stcK ks of hump¬
back whales in the southern hemisphere showing nucleotide, <l>s7 (below diagonal)
and haplotype frequency, Fst (abov€! diagonal) differentiation values. Values in
bold are sirjnificantly greater than those found in 5% of 5000 random permutations
of the data matrix (p < 0.05), alter adjustment for multiple comparison with the se¬
quential Bonferroni (orrection test (Rice 1989). Probability (p) of obtaining greater
values by chance alone is given in italics. Underlined values show estimated female
effective migration rate (N„^i). See Table 1 iox region abbreviations; see Fig. 1 for

location of stocks; stocks defined in 'Introduction'

DISCUSSION

Humpback whale population structure in the
southern hemisphere

Region-Stock WA-D NC-E Tq-E CI-F FP-F Ct>l-(j

WA-D 0.014 0.016 0.028 0.039 0.058
<0.0002 <0.0002 <0.0002 <0.0002 <0.0002

3(2 3Z Ifl 12 a
Nc:-E 0.007 0.009 0.032 0.046 0.055

0.019 <0.0002 <0.0002 <0.0002 <0.0002

fia 5Z 15. Jfl 9

Tq-E 0.012 0.004 0.022 0.031 0.058
0.003 0.045 <0.0002 <0.0002 <0.0002

42 121 22 m a
CI-F 0.014 0.013 0.004 0.025 0.073

0.009 0.007 0.109 <0.0002 <0.0002
3S. 32 130 22 fi

FP-F 0.032 0.028 0.025 0.020 0.079
<0.0002 0.001 0.001 0.008 <0.0002

m m m 21 fi
Co]-G 0.038 0.041 0.044 o.o.';4 0.045

<0.0002 <0.0002 <0.0002 <0.0002 0.0002
a 12 il 9 11

The significant geographic differentiation of mtDNA
variation among this extensive set of samples supports
the recognition of 4 or 5 subpopulations of humpback
whales across the South Pacific, each corresponding to
a specific winter breeding ground. This differentiation
suggests that dispersal of females across the South
Pacific is limited, despite the absence of geographic
barriers, probably as a result of strong maternal fidelity
to migratory destinations (Baker et al. 1990). The dif¬
ferentiation of mtr:)NA is consistent with concurrent

studies of individually identified whales (comparable
to the number of whale samples in this study for each
region) showing regional fidelity and relatively low
rates of demographic interchange between adjacent
regions, e.g. New Caledonia and Tonga, Tonga and
the Cook Islands, and the Cook Islands and French
Polynesia (Garrigue et al. 2002).
Analyses of molecular variance and phylogenetic re¬

constructions of the mtDNA control region show that, in
terms of maternal gene flow, the greatest isolation withm
the South Pacific is between Colombia and Oceania.

Whales from Colombia show the highest Osr and Fqr
values in all the pair-wise compar¬
isons with other regions (Table 2).
In the phylogenetic reconstruc¬
tion, Colombia is the only breeding
groinid represented in the AE clade
(Fig. 2) which is otherwise character¬
istic of the North Pacific population
(Baker & Medrano-Gonzalez 2002),
and is the only region not represented
in the SH clade (Table 2). The relative
isolation of the Colombian breeding
ground is consistent with the lack of
observed individual interchange
with Oceania and western South

Atlantic, based on comparison of
photo-identified whales (Garrigue et
al. 2002, Stevick et al. 2004). The ge¬
netic distinctiveness of the Colom¬

bian subpopulation could be related,
in part, to the influence of historic or
ongoing trans-equatorial gene flow
thought to occur along the Pacific
coast of central .America (Baker et al.
1990, Caballero et al. 2001, Med¬
rano-Gonzalez et al. 2001).
The differentiation between Co¬

lombia and Oceania is low com¬

pared  with the differentiation be-
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t\¥een the Indian Ocean breeding ground (Western
Australia) and Oceania, considering the geographic
separation (5000 nautical miles from New Caledonia)
and the barrier of the Australian mainland that sepa¬
rates the closest breeding ground considered in this
study. Given the estimated migration rate of 2 and 4
females per year, it is likely that large-scale compari¬
son of photographic catalogues wiU reveal individual
movements between Western Australia and Eastern

Australia or breeding grounds of Oceania. Alterna¬
tively, it is possible that such exchange is episodic, as
suggested previously by Chittleborough (1965) and
Dawbin (1966), based on shifts in humpback whale
distribution in feeding areas and recovery of Discovery
marks, and more recently by Noad et al. (2000) based
on a sudden intrusion of song from the Western Aus¬
tralian into the Eastern Australian population.

Humpback whale stock deflnition and implications
for management

The degree of isolation among breeding stocks
observed in this study should be considered in stock
identity models used by the Scientific Committee of
the International Whaling Commission (IWC) for man¬
agement of humpback whales in the southern hemi¬
sphere. The IWC currently recognizes 3 breeding
stocks in the South Pacific based on the location of

breeding grounds: 1 north of Area V (referred to as
Stock E, IWC 1998), 1 north of Area VI (Stock F) and 1
north of Area I (Stock (J). Our results confirm the dif¬
ferences between these 3 stocks, but indicate that

breeding Stock E should be further divided into 2
units, representing the difference Ijetween New Cale¬
donia and Tonga. In the absence of available genetic
material from the east coast of Australia, it remains

unknown whether whales from the larger breeding
ground along the Great Barrier Reef (Chittleborough
1965, Dawbin 1966) differ significantly from those
found around these 2 island breeding grounds. A simi¬
lar but more marked division is supported within
Stock F, between Cook Islands and the French Polyne¬
sia breeding grounds; however, the hypothesized
migratory link between those breeding grounds and
the adjacent Antarctic Area VI remains unconfirmed.
Although whales from around the Cook Islands also
showed low but significant mtDNA differentiation,
photo-identification comparisons suggest a relatively
high demographic interchange with the adjacent
breeding ground of Tonga (Garrigue et al. 2002),
The importance of adopting smaller stock subdivi¬

sions as described here is emphasized by the variable
levels of recovery among humpback whale popula¬
tions in the South Pacific. Although populations along

the east and west coasts of Australia have shown

recent increases in abundance (Bannister & Hedley
2001, Paterson et al. 2001), other stocks in the South
Pacific seem to have lagged far behind in recovery.
Some, such as those formerly found around Fiji and
New Zealand, were extirpated as the result of exten¬
sive whaling until the late 1950s, and currently com¬
prise only low numbers of whales (Gibbs et al. 2006).

Origin of breeding grounds in eastern Polynesia

The genetic differentiation observed in this study,
together with available demographic evidence demon¬
strating only limited movement of individuals among
breeding groimds (Garrigue et al. 2002), is most con¬
sistent with the hypothesis of a historically unrecog¬
nized (relic) breeding stock in far Polynesia, rather
than with alternate hypotheses of recent colonization
or vagrancy from neighboring breeding grounds. If the
latter 2 hypotheses were to be supported, both an
absence of differentiation and evidence of greater
interchange by individual whales from other breeding
groioids should have been observed.
However, if the relic breeding stock hypothesis is

correct, the lack of historical accounts of humpback
whales in eastern Polynesia is puzzling. Tahiti (in the
Society Islands, French Polynesia) was a popular port
of provisioning for whaling vessels in the South Pacific
during the 19th century, as chronicled in several docu¬
ments (Beale [1839] among others). A general lack of

interest by whalers in the presence of humpback
whales seems unlikely, as humpback whales were an
economic, although less desirable, alternative to more
valuable sperm whales (Bannister & Hedley 2001). In
other ports of the South Pacific, detailed descriptions
exist of whalers engaged in hiniting for sperm whales
and subsequently turning their attention to humpback
whales in winter (Reeves 2002), as depicted by Bullen
(1902) in his account of whaling near the Tongan
islands of Vava'u.

It is possible that the current distribution represents
a relocation into eastern Polynesia by humpback
whales from a more remote and unknown area. Al¬

though this hypothesis is inconsistent with the general
observation that humpback whales show strong fi¬
delity to breeding grounds and feeding areas (Chittle¬
borough 1965, Dawbin 1966), a similar case for recent
relocation or colonization of breeding grounds was
made for both Hawai'i (Herman 1979) and the north¬
ern West Indies (Reeves et al. 2001), neither of which
appeared to host large concentrations of humpback
whales until recently. Thus, the origin — although not
the existence — of the breeding grounds in eastern
Polynesia must remain, for now, an open question.
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